

After completing this chapter you will understand about:

 Defining Abstract Data Type Operations on objects as non-
member functions, i.e., friend functions

 Overloading different operators.
 How to compile the Abstract data types into libraries, so that it is

used in the same way as predefined libraries.

6.1 Defining Abstract data types operations

6.1.1 Friend functions
6.1.2 Difference between a friend function and a member function
6.1.3 Constant parameter modifier
6.1.4 Constant member functions
6.1.5 Overloading operations
6.1.6 Rules for overloading operators
6.1.7 Overloading unary operators
6.1.8 Overloading << and >> operators

6.2 Abstract data types
6.2.1 Separate compilation

6.3 Summary
6.4 Technical Terms
6.5 Model questions
6.6 References

Lesson 6: Tools For Defining
Abstract Data Types

Objectives

SSttrruuccttuurree OOff TThhee LLeessssoonn

Till now ADT operations have been implemented as member functions of
the class. For some operations it is better to implement it as ordinary
functions. We define operations on objects as non-member functions.
Here is a simple example.

 Program to explain the accessor functions.

#include<iostream.h>
class dayofyear
 {
 public :
 dayofyear(); //constructor
 dayofyear(int m,int d); //constructor
 void read();
 void print();
int getmonth(); //accessor function
int getday(); //accessor function
 private :
 int month,day;
 };

dayofyear :: dayofyear()
 {
 month =1;
 day =1;
 }
dayofyear :: dayofyear(int m, int d)
 {
 month= m;
 day= d;
 }

void dayofyear ::read()
 {
 cout<< " Enter month and day";
 cin>>month>>day;
}
void dayofyear::print()
 {
 cout<<day<<'-'<<month;
}
int dayofyear::getmonth()

6.1 Defining ADT Operations

{
 return month;
}

int dayofyear::getday()
{
 return day;
}

//nonmember function
int equal (dayofyear d1, dayofyear d2)
 {
 if((d1.getmonth() == d2.getmonth()) && (d1.getday() ==
 d2.getday()))
 return 1;
else
 return 0;
}
int main()
{
 dayofyear today, bach_birthday(12, 3);
 cout << "Enter today's date:\n";
 today.read();
 cout << "Today's date is ";
 today.print();
 cout << "Nirupama'sbirthday is ";
 bach_birthday.print();
 if (equal(today, bach_birthday))
 cout << "Happy Birthday \n";
 else
 cout << "Good day\n";
 return 0;
}

output:
Enter month and day8
3
Today's date is 3-8Nirupama'sbirthday is 3-12Good day

Here equal is not a member function. But, using the accessor
functions, it compares the objects of type day of year. If “equal” is a
member function, one of the dates are taken as calling object. To treat
both the dates in the same way, it is better to make “equal “ an
ordinary non-member function.

A friend function of a class is a non-member function, which has access
to private members of objects of that class. To make a function a friend of
a class, the function prototype must be listed in the class definition. The
prototype is preceded by the keyword “friend”. Prototype may be placed
in either private section or public section.

Syntax of a class definition with friend functions:

class class_name
{
 public :
 Member function declarations;
 friend prototype-for-friend-function1;
 friend prototype-for-friend-function2;

 private :
 Declaration of private members.
};

Eg :

class dayofyear
{
public :
 friend int equal dayofyear d1, dayofyear d2;

private :
 int month, day;
};

int equal (dayofyear d1, dayofyear d2)
{
 return(d1.month = = d2.month && d1.day = = d2.day);
}

A friend function is not a member function. It is defined and called the
same way as an ordinary function.

66..11..11 FFrriieenndd FFuunnccttiioonnss

 A member function is defined with scope resolution operator

and type qualifier whereas a friend function is defined like an
ordinary function.

 Both function prototypes are written in the class definition but
the keyword friend appears before the prototype declaration of
friend function.

 A member function is always called with reference to an object
whereas a friend function is called like a normal function.

Note: Member functions are used if the function involves one
argument.

 Eg: r3.add(r1,r2)
 r1.add(r2)

 Non-member functions are used if the function involves more

than one argument of the same class type or different class
type.

Program to explain the friend functions.
#include<iostream.h>
class dayofyear
 {
 public :
 dayofyear();
 dayofyear(int m,int d);
 void read();
 void print();
 friend int equal (dayofyear d1, dayofyear d2);
 private :
 int month,day;
 };

dayofyear :: dayofyear()
 {
 month = 1;
 day = 1;
}

6.1.2 Difference Between Friend Functions And
 Member Functions

dayofyear :: dayofyear(int m,int d)
{
 month= m;
 day = d;
 }
void dayofyear ::read()
 {
 cout<< " Enter month and day";
 cin>>month>>day;
}
void dayofyear::print()
 {
 cout<<day<<'-'<<month;
}
int equal (dayofyear d1, dayofyear d2)
 {
 if((d1.month == d2.month) && (d1.day == d2.day))
 return 1;
else
 return 0;
}
void main()
{
 dayofyear d1(10,20),d2(10,12),d3(9,5),d4(9,5);
if(equal (d1,d2))
 cout << "d1 & d2 are equal\n";
else
 cout<<"d1 and d2 are not equal\n ";
if (equal(d3,d4))
 cout << "d3 or d4 are equal\n";
else
 cout << "d3 and d4 are not equal\n";
}

Output:
d1 and d2 are not equal
 d3 or d4 are equal

A simple rule to use the member function or non-member function is

 To use a member function if the involved task uses only one
object.

 To use a non-member function if the involved task uses two or
more objects.

A “const” modifier is used with call by reference parameter within the
function header. A reference parameter can be modified by a function. By
using constant modifier, the reference parameter can be prevented from
accidental modifications.

Syntax:
Returntype memberfunctionname
(const datatype1& s1,const datatype2& s2,…);

e.g. : int equal (const dayofyear& d1, const dayofyear& d2)

 {
 if((d1.month = = d2.month) && (d1.day = = d2.day)
 return1;

else
 return 0; }

Thus any modifications to the data in the objects can be prevented.

We can declare a member function of class as a constant member
function. This is done by writing "const" keyword at the end of the
prototype and function header in the function definition. A constant
member function does not change an objects data. Such a function may
be an accessor function or it may simply print function.

Syntax:

//Class definition
class Class_name
 {
 public :
 return_type member_function_name (parameter list)
const;

 };

6.1.3 CCoonnssttaanntt PPaarraammeetteerr MMooddiiffiieerr

66..11..44 CCoonnssttaanntt MMeemmbbeerr FFuunnccttiioonnss

//Member function definition

return_type class_name ::Function_name
(parameter_list)const

{
function body
}

eg: class dayofyear
{
public :

 void print() const;

 };
 void dayofyear :: print() const
 {
 cout << day << ‘ ‘ << month;
 }

Operator overloading is a mechanism of redefining the meaning of C++
operators, i.e., making an operator to behave differently at different
instances. They can be member functions or friend functions. An operator
such as +,-,*,/ etc is used on predefined data. In one way these operators
are also functions. As functions can be overloaded, operators can also be
overloaded. They can be directly applied on different objects. An operator
definition is written in the same way as a function definition, except that
the operation definition includes the reserved word "operator", before the
operator name. The predefined operators such as +, -, etc. can be
overloaded by giving them a new definition for a class type.

Syntax:

 Return type class name :: operator symbol (Parameters list)
 {
 body of the function

 }

Eg: rno rno::operator + (rno r2);

66..11..55 OOppeerraattoorr OOvveerrllooaaddiinngg

To overload a + operator with a member function one argument has to
be passed into the function and to overload “+” with a friend function,
two arguments must be passed. The arguments that are passed can
be reference arguments or value arguments.

Note: During operator overloading, the arguments are listed before
and after the operator in the function call.
 Eg: v3 = v1+v2;

With a function the arguments are listed after the function name.

 v3= add(v1,v2);

Thus, the predefined operators can be overloading by giving them a
new definition for the class type or object.

1. When overloading an operator at least one argument of the

resulting overloaded operator must be class type.

2. An overloaded operator can be a friend of the class, but it is not

compulsory. It can be a member of the class.

3. A new operator cannot be created, but an existing operator can be
overloaded.

4. The number of arguments that an operator takes cannot be

changed. For example: % is a binary operator. It cannot be
overloaded into a unary operator and vice versa.

5. Precedence of operators cannot be changed.

The following operators can be overloaded.

 . class member operator
 :: scope resolution operator
 ?: conditional operator
 .* de-referenced member access
sizeof size of operator

66..11..66 RRuulleess FFoorr OOppeerraattoorr OOvveerrllooaaddiinngg

Program to apply arithmetic and relational operations by operator
overloading

#include<iostream.h>
#include<stdlib.h>

class ratio
{
 int p,q;
 public:
 ratio()
 {
 p=q=1;
 }
 ratio(int a,int b)
 {
 p=a;
 q=b;
 if(q<=0)
 {
 cout<<"improper argument";
 exit(0);
 }
 int m=p<q?p:q;
 for(int i=m;i>1;i--)
 {
 if((p%i==0) && (q%i==0))
 {
 p/=i;
 q/=i;
 break;
 }
 }
 }
 void get()
 {
 cout<<"enter input";
 cin>>p>>q;
 int m=p<q?p:q;

 for(int i=m;i>1;i--)
 if((p%i==0) && (q%i==0))
 {
 p/=i;
 q/=i;

 break;
 }
 }
 void put()
 {
 cout<<p<<"/"<<q<<"\n";
 }
 void put1()
 {
 cout<<p<<"/"<<q;
 }
friend ratio operator+(ratio &,ratio &);
friend ratio operator-(ratio &,ratio &);
friend ratio operator*(ratio &,ratio &);
friend ratio operator/(ratio &,ratio &);
void operator<(ratio &);
void operator<=(ratio &);
void operator>(ratio &);
void operator>=(ratio &);
void operator==(ratio &);
void operator!=(ratio &);
};
ratio operator+(ratio &r1,ratio &r2)
 {
 ratio temp;
 temp.p=(r1.p*r2.q)+(r2.p*r1.q);
 temp.q=r1.q*r2.q;
 int min=temp.p<temp.q?temp.p:temp.q;
 for(int i=min;i>1;i--)
 if((temp.p%i==0)&&(temp.q%i==0))
 {
 temp.p/=i;
 temp.q/=i;
 break;
 }
 return temp;
}
ratio operator-(ratio &r1,ratio &r2)
{
 ratio temp;
 temp.p=(r1.p*r2.q)-(r2.p*r1.q);
 temp.q=r1.q*r2.q;
 int min=temp.p<temp.q?temp.p:temp.q;
 for(int i=min;i>1;i--)
 if((temp.p%i==0)&&(temp.q%i==0))

 {
 temp.p/=i;
 temp.q/=i;
 break;
 }
 return temp;
}
ratio operator*(ratio &r1,ratio &r2)
{
 ratio temp;
 temp.p=r1.p*r2.p;
 temp.q=r1.q*r2.q;
 int min=temp.p<temp.q?temp.p:temp.q;
 for(int i=min;i>1;i--)
 {
 if((temp.p%i==0)&&(temp.q%i==0))
 {
 temp.p/=i;
 temp.q/=i;
 break;
 }
 }
 return temp;
}
ratio operator/(ratio &r1,ratio &r2)
{
 ratio temp;
 temp.p=r1.p*r2.q;
 temp.q=r2.p*r1.q;
 int min=temp.p<temp.q?temp.p:temp.q;
 for(int i=min;i>1;i--)
 {
 if((temp.p%i==0)&&(temp.q%i==0))
 {
 temp.p/=i;
 temp.q/=i;
 break;
 }
 }
 return temp;
}
void ratio::operator<(ratio &r)
{
 float f1,f2;
 f1=float(p)/float(q);

 f2=float(r.p)/float(r.q);
 if(f1<f2)
 {
 put1();
 cout<<"<";
 r.put1();
 }
 else
 {
 r.put1();
 cout<<"<";
 put1();
 }
}
void ratio::operator<=(ratio & r)
{
 float f1,f2;
 f1=(float)p/(float)q;
 f2=(float)r.p/(float)r.q;
 if(f1<=f2)
 {
 put1();
 cout<<"<=";
 r.put1();
 }
 else
 {
 r.put1();
 cout<<"<=";
 put1();
 }
}
void ratio::operator>(ratio & r)
{
 float f1,f2;
 f1=(float)p/(float)q;
 f2=(float)r.p/(float)r.q;
 if(f1>f2)
 {
 put1();
 cout<<">";
 r.put1();
 }
 else
 {

 r.put1();
 cout<<">";
 put1();
 }
}

void ratio::operator>=(ratio & r)
{
 float f1,f2;
 f1=(float)p/(float)q;
 f2=(float)r.p/(float)r.q;
 if(f1>=f2)
 {
 put1();
 cout<<">=";
 r.put1();
 }
 else
 {
 r.put1();
 cout<<">=";
 put1();
 }
}
void ratio::operator==(ratio & r)
{
 float f1,f2;
 f1=(float)p/(float)q;
 f2=(float)r.p/(float)r.q;
 if(f1==f2)
 {
 put1();
 cout<<"==";
 r.put1();
 }
 else
 {
 r.put1();
 cout<<"!=";
 put1();
 }
}
void ratio::operator!=(ratio & r)
{

 float f1,f2;
 f1=(float)p/(float)q;
 f2=(float)r.p/(float)r.q;
 if(f1!=f2)
 {
 put1();
 cout<<"!=";
 r.put1();
 }
 else
 {
 r.put1();
 cout<<"!=";
 put1();
 }
}
int main()
{
 ratio r1(25,15),r2,r3(1,1),r4(5,3);
 r2.get();
 cout<<"r1=";
 r1.put();
 cout<<"r2=";
 r2.put();
 cout<<"r3=";
 r3.put();
 cout<<"r4=";
 r4.put();
 cout<<"addition of r1 r2 is ";
 r3=r1+r2;
 r3.put();
 cout<<"subtraction of r1 r2 is ";
 r3=r1-r2;
 r3.put();
 cout<<"multiplication of r1 r2 is ";
 r3=r1*r2;
 r3.put();
 cout<<"division of r1 r2 is ";
 r3=r1/r2;
 r3.put();
 r1<r2;
 cout<<"\n";
 r1>=r4;
 cout<<"\n";
 r2>r4;

 cout<<"\n";
 r1==r2;
 cout<<"\n";
 r1<=r2;
 cout<<"\n";
 r1==r4;
 return 0;
}

output:

enter input2
3
r1=5/3
r2=2/3
r3=1/1
r4=5/3
addition of r1 r2 is 7/3
subtraction of r1 r2 is 1/1
multiplication of r1 r2 is 10/9
division of r1 r2 is 5/2
2/3<5/3
5/3>=5/3
5/3>2/3
2/3!=5/3
2/3<=5/3
5/3==5/3

Unary and Binary operators can be overloaded. We have seen the
overloading of binary operators in the above example of overloading.
Thus unary – (negation) operator, prefix ++,- - can be overloaded. There
is a different method to overload the postfix ++ and --.

#include<iostream.h>
class space
{
int x;
int y;
int z;
public:
space(int a1,int b1, int c1)
{x = a1; y = b1; z = c1;}

6.1.7 Overloading Unary Operators

void operator -()
{
x = -x;
y= -y;
z =-z;
} void operator --()
{
--x;
--y;
--z;
} void operator -=(space& s)
{
x-= s.x;
y-= s.y;
z-= s.z;
}
void putdata()
{
cout<<"\nx:"<<x<<"\ty:"<<y<<"\tz:"<<z;
} };
int main()
{
space s1(2,-1,3),s2(1,1,1);
cout<<"\nData in s1:";s1.putdata();
cout<<"\nData in s2:";s2.putdata();
-s1;
cout<< "\nNegation of s1:";s1.putdata();
--s1;
cout<<"\nPredecrement s1:";s1.putdata();
s1-=s2;
cout<<"\ns1-=s2";s1.putdata();
return 0;
}

output:

Data in s1:
x:2 y:-1 z:3
Data in s2:
x:1 y:1 z:1
Negation of s1:
x:-2 y:1 z:-3
Predecrement s1:
x:-3 y:0 z:-4
s1-=s2
x:-4 y:-1 z:-5

The insertion, << and extraction >> operators can be overloaded as any
other operators. The value returned must be stream. The type of value
returned must have the & symbol added to the end of the type name.
The prototype and function definition is as follows:

Prototypes:

class classname
{
public:

friend istream& operator >>(istream& parameter1,
 classname& parameter2);
friend ostream&operator<<(ostream& parameter3,
 classname & parameter4);

.
private:

.

}

#include<iostream.h>
class space
{
int x;
int y;
int z;
public:
space(int a1,int b1, int c1)
{x = a1; y = b1; z = c1;}
void operator -()
{
x = -x;
y= -y;
z =-z;
}
void operator --()
{
--x;
--y;

66..11..88 OOvveerrllooaaddiinngg OOff IInnsseerrttiioonn AAnndd EExxttrraaccttiioonn OOppeerraattoorrss

--z;
}
void operator -=(space& s)
{
x-= s.x;
y-= s.y;
z-= s.z;
}
friend istream& operator >>(istream &din, space&);
friend ostream& operator <<(ostream &dout,space&);
};
istream& operator >>(istream &din, space& s)
{
din>>s.x>>s.y>>s.z;
return din;
}
ostream& operator <<(ostream &dout, space& s)
{
dout<<"\nx:"<<s.x<<"\ty:"<<s.y<<"\tz:"<<s.z;
return dout;
}
int main()
{
space s1(2,-1,3),s2(1,1,1);
cout<<"\nData in s1:"<<s1;
cout<<"\nData in s2:"<<s2;
-s1;
cout<< "\nNegation of s1:"<<s1;
--s1;
cout<<"\nPredecrement of s1:"<<s1;
s1-=s2;
cout<<"\ns1-=s2"<<s1;
return 0;
}

output:
Data in s1:
x:2 y:-1 z:3
Data in s2:
x:1 y:1 z:1
Negation of s1:
x:-2 y:1 z:-3
Predecrement of s1:
x:-3 y:0 z:-4
s1-=s2
x:-4 y:-1 z:-5

A Data type consists of a collection of values together with a set of basic
operations defined on these values . If the programmer who uses the data
type does not have access to the details of how the values and
operations are implemented, such data type is called an abstract data
type.

To define a class as an abstract data type, the specification details of the
class type used by the programmer is separated from the details of
implementation. In order to do this,

 All the member variables of the class are made private.
 All basic operations used by the programmer are made

public member functions and their usage is completely
specified.

 Any helping functions are made private.

The interface of an ADT tells how to use the ADT in the program. It
consists of public member functions of the class along with comments
how to use them. The interface is to be known to use an abstract data
type.

The implementation of the ADT tells how this interface is realized as
C++ code. It consists of private members of the class and the
definitions of both public and private member functions.

An ADT is defined as a class and the definition and implementation of its
member functions are put in separate files.

 The definition of the class is put in a header file called the
interface file. The name of the file ends with .h. The interface file
also contains the prototypes for the functions and overloaded
operators that define basic ADT operations.

6.2 Abstract Data Types

6.2.1 Separate Compilation

 The definitions of all functions and overloaded operators
mentioned in the interface file are placed in another file called
implementation file. This file must include the directive that names
the interface file. The interface and implementation files have the
same filename, but end with different suffixes.

 The main part of the program is placed in another file called an

application file. This also must include the naming directive of the
interface file. The application file must be compiled separately
from the implementation file.

The object code produced by compiling the application file and object
code produced by compiling the implementation file must be linked and
executed.

Program using separate compilation
/*This program uses operator overloading of =,--(pre decrement
and post decrement), < , <<,>> operators*/
//dist.h(header file) interface file
#ifndef DIST_H
#define DIST_H
enum bool{false,true};
class distance
{

int feet;
float inch;
public:
distance();
distance(int f, float i);
distance operator + (distance &d);
void operator --();
void operator --(int i);
friend bool operator <(distance d1,distance d2);
friend istream &operator>>(istream &ip, distance &d);
friend ostream &operator<<(ostream &op,distance &d);

};

#endif
//dist.cpp implementation file
#include<iostream.h>
#include "dist.h"
distance::distance()
{

feet = 0;
inch =0;

}
distance::distance(int f, float i)
{

feet = f;
inch = i;

}
distance distance::operator + (distance &d)
{

distance temp;
temp .inch = inch + d.inch;
temp.feet = feet + d.feet;
while (temp.inch >= 12.0)
{
temp.inch -=12.0;
temp.feet +=1;
}
return temp;

}
void distance::operator --()
{

--feet;
}
void distance::operator --(int)
{

feet--;
}

bool operator <(distance d1,distance d2)
{

if (d1.feet < d2.feet)
return true;
else
if (d1.feet > d2.feet)
return false;
else
if(d1.inch < d2.inch)
return true;
else
return false;

}
istream &operator>>(istream &ip, distance &d)
{

ip>>d.feet>>d.inch;
return ip;

}

ostream &operator<<(ostream &op,distance &d)
{

op<<d.feet<<"\'-"<<d.inch<<"\"";
return op;

}

//distapp.cpp application file

#include<iostream.h>
#include"dist.h"
#include "dist.cpp"
int main()
{

distance d1(3,9),d2,d3;
cout<<"\nEnter distance 2:";
cin>>d2;
cout<<"\nFirst distance:"<<d1;
cout<<"\nSecond distance:"<<d2;
d3 = d1 + d2;
cout<<"\nSum of two distances:"<<d3<<endl;
return 0;

}

Output:

Enter distance 2:3
4

First distance:3'-9"
Second distance:3'-4"
Sum of two distances:7'-1"

 We have covered different tools for defining the class as an Abstract

Data Types. In this, we have studied how to write friend functions and
also the operator overloading of unary binary and extraction and
insertion operators .

 We have also studied about the constant parameter modifiers in
functions.

 We have also reviewed an Abstract data type and how to convert a
class as an Abstract data type. We have also covered the separate
compilation. The definition of the class and implementation of its

6.3 Summary

functions are placed in separate files. This is compiled separately and
can be used in any application.

Accessory Function: Member functions that give access to the private
members of the class.

Friend Function: A function although not a member of a class is able to
access the private members of that class.

Overloading Operator: : A language feature that allows an operator to
be given more than one definition. The types of arguments with which the
operator is called, determines which definition is used.

1. Explain the different tools for defining Abstract data types with

Examples.
2. What is a friend function? How is it different from the member

function?
3. What is operator overloading? Explain with an example the

overloading of a binary operator.
4. Explain the overloading of << and >> operators with an example?
5. Define an Abstract Data type class in separate files.

Object-oriented programming with C++,

 by E. Bala Gurusamy.
Problem solving with C++

 by Walter Savitch

Mastering C++

by K.R.Venugopal, RajkumarBuyya, T.RaviShankar

6.5 Model Questions

6.6 References

6.4 Technical Terms

AUTHOR

M. NIRUPAMA BHAT, MCA., M.Phil.,

 Lecturer,
Dept. Of Computer Science,

 JKC College,
GUNTUR.

